addition of unit 1 3 4 5
This commit is contained in:
22
unit 4/01_Classification_Basics.md
Normal file
22
unit 4/01_Classification_Basics.md
Normal file
@@ -0,0 +1,22 @@
|
||||
# Classification Basics
|
||||
|
||||
## What is Classification?
|
||||
**Classification** is the process of predicting the **class label** of a data item.
|
||||
- **Goal**: To assign a category to a new item based on past data.
|
||||
- **Example**:
|
||||
- Input: A bank loan application.
|
||||
- Output Class: "Safe" or "Risky".
|
||||
|
||||
## Classification vs Prediction
|
||||
- **Classification**: Predicts a **category** (Discrete value).
|
||||
- *Example*: Yes/No, Red/Blue/Green.
|
||||
- **Prediction (Regression)**: Predicts a **number** (Continuous value).
|
||||
- *Example*: Predicting the price of a house ($500k, $505k...).
|
||||
|
||||
## The Process
|
||||
1. **Training Phase (Learning)**:
|
||||
- The algorithm learns from a "Training Set" where the correct answers (labels) are known.
|
||||
- It builds a **Model** (e.g., a Decision Tree).
|
||||
2. **Testing Phase (Classification)**:
|
||||
- The model is tested on new, unseen data ("Test Set").
|
||||
- We check the **Accuracy**: Percentage of correct predictions.
|
||||
Reference in New Issue
Block a user