unit 2 added
This commit is contained in:
28
unit 2/00_Index.md
Normal file
28
unit 2/00_Index.md
Normal file
@@ -0,0 +1,28 @@
|
||||
# Machine Learning Notes
|
||||
|
||||
Welcome to your simplified Machine Learning notes! These notes are designed to be easy to understand.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [[01_Introduction_to_ML|Introduction to Machine Learning]]
|
||||
- Supervised Learning
|
||||
- Regression vs Classification
|
||||
2. [[02_Data_Science_Process|Standard Process for Data Science (CRISP-DM)]]
|
||||
- The 6 phases of a project
|
||||
3. [[03_Logistic_Regression|Logistic Regression]]
|
||||
- Odds and Probability
|
||||
- Sigmoid Function
|
||||
4. [[04_Model_Evaluation|Model Evaluation Metrics]]
|
||||
- Confusion Matrix, Accuracy, Precision, Recall
|
||||
- ROC and AUC
|
||||
5. [[05_Imbalanced_Data|Handling Imbalanced Data]]
|
||||
- SMOTE and Resampling
|
||||
6. [[06_KNN_Algorithm|K-Nearest Neighbors (KNN)]]
|
||||
- Distance Measures
|
||||
- How KNN works
|
||||
7. [[07_Naive_Bayes|Naive Bayes Classifier]]
|
||||
- Bayes Theorem
|
||||
- Spam Filter Example
|
||||
8. [[08_Decision_Tree|Decision Tree Algorithm]]
|
||||
- Nodes and Splitting
|
||||
- Gini and Entropy
|
||||
Reference in New Issue
Block a user